Thursday, March 10, 2016

Sucesiones. Cristian Rodríguez



Aritméticas y geométricas

Toda secuencia ordenada de números reales recibe el nombre de sucesión. Dentro del grupo de sucesiones existen dos particularmente interesantes por el principio de regularidad que permite sistematizar la definición de sus propiedades: las progresiones aritméticas y geométricas.

Progresiones aritméticas

Una progresión aritmética es una clase de sucesión de números reales en la que cada término se obtiene sumando al anterior una cantidad fija predeterminada denominada diferencia. Llamando d a esta diferencia, el término general de la progresión an , que ocupa el número de orden n en la misma, se puede determinar a partir del valor del primero de los términos, a1.
  • an=a1+(n-1)d

Suma de los términos de una progresión aritmética

Para determinar la suma de un número finito de términos de una progresión aritmética, denotada por a1, a2, a3, ..., an-2, an-1, an, basta con considerar el principio de que los pares de términos a1 y an, a2 y an-1, a3 y an-2, etcétera, son equidistantes, de manera que todos estos pares suman una misma cantidad.
Generalizando esta consideración, se tiene que la suma de todos los términos de una progresión aritmética es igual a:
  • Sn= n/2 (a1+an)

Interpolación de términos en una progresión aritmética

Entre cada dos términos a y b de una progresión aritmética es posible interpolar otros m términos, llamados medios diferenciales, de manera que todos ellos integren una nueva progresión aritmética (con m + 2 términos) donde a y b sean los extremos.
La diferencia de esta progresión se determinará con arreglo a la siguiente fórmula:

  • Sn=n/2 {2a1+(n-1)d}

Progresiones geométricas

Otra forma común de sucesión es la constituida por las llamadas progresiones geométricas. Estas progresiones se definen como aquellas en las que cada término se obtiene multiplicando el anterior por un valor fijo predefinido que se conoce comorazón.
El término general an de una progresión geométrica puede escribirse como:

an = a1 × rn-1
  • Sn=s1 (1-rn)/1-r
  • Sn= a1-r.an/1-r



CRISTIAN RODRÍGUEZ MILLÁN

No comments:

Post a Comment